Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3947, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402724

RESUMO

The cortical population code is pervaded by activity patterns evoked by movement, but it remains largely unknown how such signals relate to natural behavior or how they might support processing in sensory cortices where they have been observed. To address this we compared high-density neural recordings across four cortical regions (visual, auditory, somatosensory, motor) in relation to sensory modulation, posture, movement, and ethograms of freely foraging male rats. Momentary actions, such as rearing or turning, were represented ubiquitously and could be decoded from all sampled structures. However, more elementary and continuous features, such as pose and movement, followed region-specific organization, with neurons in visual and auditory cortices preferentially encoding mutually distinct head-orienting features in world-referenced coordinates, and somatosensory and motor cortices principally encoding the trunk and head in egocentric coordinates. The tuning properties of synaptically coupled cells also exhibited connection patterns suggestive of area-specific uses of pose and movement signals, particularly in visual and auditory regions. Together, our results indicate that ongoing behavior is encoded at multiple levels throughout the dorsal cortex, and that low-level features are differentially utilized by different regions to serve locally relevant computations.


Assuntos
Córtex Auditivo , Neocórtex , Ratos , Masculino , Animais , Movimento/fisiologia , Lobo Parietal/fisiologia , Córtex Auditivo/fisiologia , Postura/fisiologia
2.
Brain Commun ; 5(2): fcad115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091586

RESUMO

Projection neurons in the anteriolateral part of entorhinal cortex layer II are the predominant cortical site for hyper-phosphorylation of tau and formation of neurofibrillary tangles in prodromal Alzheimer's disease. A majority of layer II projection neurons in anteriolateral entorhinal cortex are unique among cortical excitatory neurons by expressing the protein reelin. In prodromal Alzheimer's disease, these reelin-expressing neurons are prone to accumulate intracellular amyloid-ß, which is mimicked in a rat model that replicates the spatio-temporal cascade of the disease. Two important findings in relation to this are that reelin-signalling downregulates tau phosphorylation, and that oligomeric amyloid-ß interferes with reelin-signalling. Taking advantage of this rat model, we used proximity ligation assay to assess whether reelin and intracellular amyloid-ß directly interact during early, pre-plaque stages in anteriolateral entorhinal cortex layer II reelin-expressing neurons. We next made a viral vector delivering micro-RNA against reelin, along with a control vector, and infected reelin-expressing anteriolateral entorhinal cortex layer II-neurons to test whether reelin levels affect levels of intracellular amyloid-ß and/or amyloid precursor protein. We analysed 25.548 neurons from 24 animals, which results in three important findings. First, in reelin-expressing anteriolateral entorhinal cortex layer II-neurons, reelin and intracellular amyloid-ß engage in a direct protein-protein interaction. Second, injecting micro-RNA against reelin lowers reelin levels in these neurons, amounting to an effect size of 1.3-4.5 (Bayesian estimation of Cohen's d effect size, 95% credible interval). This causes a concomitant reduction of intracellular amyloid-ß ranging across three levels of aggregation, including a reduction of Aß42 monomers/dimers amounting to an effect size of 0.5-3.1, a reduction of Aß prefibrils amounting to an effect size of 1.1-3.5 and a reduction of protofibrils amounting to an effect size of 0.05-2.1. Analysing these data using Bayesian estimation of mutual information furthermore reveals that levels of amyloid-ß are dependent on levels of reelin. Third, the reduction of intracellular amyloid-ß occurs without any substantial associated changes in levels of amyloid precursor protein. We conclude that reelin and amyloid-ß directly interact at the intracellular level in the uniquely reelin-expressing projection neurons in anteriolateral entorhinal cortex layer II, where levels of amyloid-ß are dependent on levels of reelin. Since amyloid-ß is known to impair reelin-signalling causing upregulated phosphorylation of tau, our findings are likely relevant to the vulnerability for neurofibrillary tangle-formation of this entorhinal neuronal population.

3.
iScience ; 25(12): 105512, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465136

RESUMO

Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the "sources of uncertainty" framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.

4.
Cell Rep ; 35(8): 109175, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038726

RESUMO

CA1 and subiculum (SUB) connect the hippocampus to numerous output regions. Cells in both areas have place-specific firing fields, although they are more dispersed in SUB. Weak responses to head direction and running speed have been reported in both regions. However, how such information is encoded in CA1 and SUB and the resulting impact on downstream targets are poorly understood. Here, we estimate the tuning of simultaneously recorded CA1 and SUB cells to position, head direction, and speed. Individual neurons respond conjunctively to these covariates in both regions, but the degree of mixed representation is stronger in SUB, and more so during goal-directed spatial navigation than free foraging. Each navigational variable could be decoded with higher precision, from a similar number of neurons, in SUB than CA1. The findings point to a possible contribution of mixed-selective coding in SUB to efficient transmission of hippocampal representations to widespread brain regions.


Assuntos
Mapeamento Encefálico/métodos , Hipocampo/fisiologia , Humanos
5.
Entropy (Basel) ; 20(10)2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-33265828

RESUMO

Models can be simple for different reasons: because they yield a simple and computationally efficient interpretation of a generic dataset (e.g., in terms of pairwise dependencies)-as in statistical learning-or because they capture the laws of a specific phenomenon-as e.g., in physics-leading to non-trivial falsifiable predictions. In information theory, the simplicity of a model is quantified by the stochastic complexity, which measures the number of bits needed to encode its parameters. In order to understand how simple models look like, we study the stochastic complexity of spin models with interactions of arbitrary order. We show that bijections within the space of possible interactions preserve the stochastic complexity, which allows to partition the space of all models into equivalence classes. We thus found that the simplicity of a model is not determined by the order of the interactions, but rather by their mutual arrangements. Models where statistical dependencies are localized on non-overlapping groups of few variables are simple, affording predictions on independencies that are easy to falsify. On the contrary, fully connected pairwise models, which are often used in statistical learning, appear to be highly complex, because of their extended set of interactions, and they are hard to falsify.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...